Number and Algebra: Fractions and Decimals: Adding Fraction Multiples

Australian Curriculum
This lesson plan could be used to support the teaching and learning of the following Content Descriptions from the Australian Curriculum.
Y6 - Number and Algebra, Fractions and Decimals
Solve problems involving addition and subtraction of fractions with the same or related denominators (ACMNA 126)

Child-Friendly Aim:

I can subtract fractions with denominators that are multiples of the same number.

Key/New Words:

Fraction, denominator, numerator, improper, mixed number, equivalent.

Success Criteria:

I can subtract fractions with the same denominator.

I can convert between improper and mixed number fractions.

I can use multiplication to change a fraction into an equivalent.

I can subtract fractions with denominators that are multiples of the same number.

Resources:

Lesson Pack
Whiteboards and markers - class set

Preparation:

Subtracting Fractions Stained Glass Designs Activity Sheets - one per child

Learning Sequence

Kangaroo Fractions: Children identify the fraction Kylie Kangaroo has jumped to along the number line shown on
the Lesson Presentation. Encourage children to make links to equivalent fractions and to convert mixed numbers

to improper fractions. | Same Denominators: Use the animated text and images on the Lesson Presentation to revise how to subtract |
| :--- |
| fractions with the same denominator, discussing what happens to the numerators and denominators. Emphasise that |
| mixed numbers should be converted to the equivalent improper fractions to make the calculation easier. |

Masterit

Subtractit: Roll a dice to generate a denominator for two fractions. Roll the dice again to generate different numerators to create a subtraction calculating putting the larger number first. This can be extended to subtracting three or more fractions.
Matchit: Use these to revise subtracting fractions.

Mathematics

Number and Algebra

Subtracting

Fraction Multiples

Aim

- I can subtract fractions with denominators that are multiples of the same number.

Success Criteria

- I can subtract fractions with the same denominator.
- I can convert between improper and mixed number fractions.
- I can use multiplication to change a fraction into an equivalent.
- I can subtract fractions with denominators that are multiples of the same number.

Same Denominators

In this fraction subtraction, both the fractions have the same denominator.

Same Denominators

In this fraction subtraction, both the fractions have the same denominator.

Same Denominators

In this fraction subtraction, both the fractions have the same denominator.

This is a mixed number. Change it to an improper fraction before calculating.

Denominator Multiples

In this fraction subtraction, both the fractions have different denominators which are multiples of the same number.

To solve the calculation, we use multiplication to change the fraction with the lowest denominator into an equivalent fraction with the same denominator as the other fraction.

Remember to do the same multiplication to the numerator.

Denominator Multiples

Now we have a calculation where both the denominators are the same number.

Denominator Multiples

Let's try this with another calculation where the fractions have different denominators which are multiples of the same number.

Denominator Multiples

Let's try this with another calculation where the fractions have different denominators which are multiples of the same number.

Colour by Fraction

Subtracting Fractions

Stained Glass Designs

Pre unses ts than cotiviture eve			
mani		- tetumen unil? \ddagger	
rempant		- prowe tamit	
tase	Quentient	Atmer	Sout
	$\frac{7}{2} \cdot \frac{1}{2}=$		
	$\frac{13}{8} \cdot \frac{3}{4}=$		
	$\frac{10}{6}-\frac{1}{2}=$		
	$\frac{13}{4} \cdot \frac{3}{2}=$		
	$\frac{7}{10} \cdot \frac{5}{20}=$		
	$\frac{4}{3}=\frac{7}{15}=$		
	$\frac{31}{20} \cdot \frac{2}{5}=$		
	$\frac{19}{9} \cdot \frac{1}{3}=$		

Prove It

Is this calculation correct? Prove it!

$$
2 \frac{6}{10}-\frac{4}{5}=1 \frac{4}{5}
$$

$$
\frac{26}{10}-\frac{8}{10}=\frac{18}{10}=1 \frac{8}{10}=1 \frac{4}{5}
$$

Prove It

Is this calculation correct? Prove it!

Prove It

Is this calculation correct? Prove it!

$$
2 \frac{5}{9}-\frac{2}{3}=1 \frac{5}{9}
$$

$$
\frac{23}{9}-\frac{6}{9}=\frac{17}{9}=1 \frac{8}{9}
$$

Prove It

Is this calculation correct? Prove it!

$$
3 \frac{2}{8}-\frac{3}{4}=2 \frac{1}{2}
$$

$$
\frac{26}{8}-\frac{6}{8}=\frac{20}{8}=2 \frac{4}{8}=2 \frac{1}{2}
$$

Aim

- I can subtract fractions with denominators that are multiples of the same number.

Success Criteria

- I can subtract fractions with the same denominator.
- I can convert between improper and mixed number fractions.
- I can use multiplication to change a fraction into an equivalent.
- I can subtract fractions with denominators that are multiples of the same number.

Subtracting Fractions Stained Glass Designs

I can subtract fractions with denominators that are multiples of the same number.
000

Choose the four colours for your stained-glass design:
\square Less than $\frac{1}{2}$
\square Between 1 and $1 \frac{1}{2}$
\square Between $\frac{1}{2}$ and 1
\square Greater than $1 \frac{1}{2}$

Subtracting Fractions Stained Glass Designs

I can subtract fractions with denominators that are multiples of the same number.

Identify if the answers to these calculations are:

- less than $\frac{1}{2}$
- between 1 and $1 \frac{1}{2}$
- between $\frac{1}{2}$ and 1
- greater than $1 \frac{1}{2}$

Colour each section of the stained-glass design based on your answers.

Stained Glass Section	Question	Answer	Size
$e=$	$\frac{7}{8}-\frac{1}{2}=$		
$f=$	$\frac{13}{8}-\frac{3}{4}=$		
$\mathbf{b}=$	$\frac{13}{4}-\frac{3}{2}=$		
$\mathbf{s}=$	$\frac{7}{10}-\frac{5}{20}=$		
$\mathbf{p}=$	$\frac{4}{3}-\frac{7}{15}=$		
$\mathbf{m}=$	$\frac{31}{20}-\frac{2}{5}=$		
	$\frac{19}{9}-\frac{1}{3}=$		

Subtracting Fractions Stained Glass Designs Answers

I can subtract fractions with denominators that are multiples of the same number.

Identify if the answers to these calculations are:

- less than $\frac{1}{2}$
- between 1 and $1 \frac{1}{2}$
- between $\frac{1}{2}$ and 1
- greater than $1 \frac{1}{2}$

Colour each section of the stained-glass design based on your answers.

Stained Glass Section	Question	Answer	Size
e $=$	$\frac{7}{8}-\frac{1}{2}=$	$\frac{3}{8}$	Less than $\frac{1}{2}$
$f=$	$\frac{13}{8}-\frac{3}{4}=$	$\frac{7}{8}$	$\begin{aligned} & \text { Between } \frac{1}{2} \\ & \text { and 1 } \end{aligned}$
$\mathrm{b}=$	$\frac{10}{6}-\frac{1}{2}=$	$\frac{7}{6}=1 \frac{1}{6}$	Between I and $1 \frac{1}{2}$
$a=$	$\frac{13}{4}-\frac{3}{2}=$	$\frac{7}{4}=1 \frac{3}{4}$	Greater than $1 \frac{1}{2}$
S $=$	$\frac{7}{10}-\frac{5}{20}=$	$\frac{9}{20}$	Less than $\frac{1}{2}$
$p=$	$\frac{4}{3}-\frac{7}{15}=$	$\frac{13}{15}$	$\begin{aligned} & \text { Between } \frac{1}{2} \\ & \text { and 1 } \end{aligned}$
$\mathrm{m}=$	$\frac{31}{20}-\frac{2}{5}=$	$\frac{23}{20}=1 \frac{3}{20}$	Between 1 and $1 \frac{1}{2}$
$\mathrm{k}=$	$\frac{19}{9}-\frac{1}{3}=$	$\frac{16}{9}=1 \frac{7}{9}$	Greater than $1 \frac{1}{2}$

Subtracting Fractions Stained Glass Designs

I can subtract fractions with denominators that are multiples of the same number.

Identify if the answers to these calculations are:

- less than $\frac{1}{2}$
- between 1 and $1 \frac{1}{2}$
- between $\frac{1}{2}$ and 1
- greater than $1 \frac{1}{2}$

Colour each section of the stained-glass design based on your answers.

Stained Glass Section	Question	Answer	Size
$C=$	$1 \frac{8}{10}-\frac{1}{2}=$		
$i=$	$\frac{9}{10}-\frac{3}{5}=$		
$r=$	$1 \frac{1}{4}-\frac{8}{20}=$		
$\mathrm{n}=$	$2 \frac{7}{25}-\frac{2}{5}=$		
$d=$	$2 \frac{1}{18}-\frac{1}{3}=$		
j $=$	$1 \frac{9}{12}-\frac{2}{4}=$		
V =	$1 \frac{5}{7}-\frac{5}{35}=$		
$\mathrm{t}=$	$1 \frac{3}{6}-\frac{6}{30}=$		

Subtracting Fractions Stained Glass Designs Answers

I can subtract fractions with denominators that are multiples of the same number.

Identify if the answers to these calculations are:

- less than $\frac{1}{2}$
- between 1 and $1 \frac{1}{2}$
- between $\frac{1}{2}$ and 1
- greater than $1 \frac{1}{2}$

Colour each section of the stained-glass design based on your answers.

Stained Glass Section	Question	Answer	Size
$\mathrm{c}=$	$1 \frac{8}{10}-\frac{1}{2}=$	$\frac{13}{10}=1 \frac{3}{10}$	Between 1 and $1 \frac{1}{2}$
$\mathrm{i}=$	$\frac{9}{10}-\frac{3}{5}=$	$\frac{3}{10}$	Less than $\frac{1}{2}$
$\mathrm{r}=$	$1 \frac{1}{4}-\frac{8}{20}=$	$\frac{47}{20}=1 \frac{22}{25}$	Between $\frac{1}{2}$ and 1
$\mathrm{n}=$	$2 \frac{1}{18}-\frac{1}{3}=$	$\frac{31}{18}=1 \frac{13}{18}$	Greater than 1 $\frac{1}{2}$
$\mathrm{~d}=$	$1 \frac{9}{12}-\frac{2}{4}=$	$\frac{15}{12}=1 \frac{3}{12}=1 \frac{1}{4}$	Getween 1 and $1 \frac{1}{2}$
$\mathrm{j}=$	$1 \frac{5}{7}-\frac{5}{35}=$	$\frac{55}{35}=1 \frac{20}{35}=1 \frac{4}{7}$	Greater than 1 $\frac{1}{2}$
$\mathrm{v}=$	$1 \frac{3}{6}-\frac{6}{30}=$	$\frac{39}{30}=1 \frac{9}{30}=1 \frac{3}{10}$	Between 1 and 1 $\frac{1}{2}$

Subtracting Fractions Stained Glass Designs

I can subtract fractions with denominators that are multiples of the same number.

Identify if the answers to these calculations are:

- less than $\frac{1}{2}$
- between 1 and $1 \frac{1}{2}$
- between $\frac{1}{2}$ and 1
- greater than $1 \frac{1}{2}$

Colour each section of the stained-glass design based on your answers.

Stained Glass Section	Question	Answer	Size
$\mathrm{g}=$	$2 \frac{1}{21}-\frac{1}{7}=$		
l =	$1 \frac{10}{18}-\frac{1}{6}=$		
0 =	$\frac{3}{5}-\frac{2}{15}=$		
W =	$\frac{11}{10}-\frac{3}{50}=$		
$x=$	$2 \frac{1}{4}-\frac{7}{16}=$		
$\mathrm{h}=$	$1 \frac{7}{12}-\frac{2}{3}=$		
$\mathbf{u}=$	$\frac{12}{6}-\frac{3}{12}=$		
$q=$	$1 \frac{3}{6}-\frac{6}{24}=$		

Subtracting Fractions Stained Glass Designs Answers

I can subtract fractions with denominators that are multiples of the same number.

Identify if the answers to these calculations are:

- less than $\frac{1}{2}$
- between 1 and $1 \frac{1}{2}$
- between $\frac{1}{2}$ and 1
- greater than $1 \frac{1}{2}$

Colour each section of the stained-glass design based on your answers.

Stained Glass Section	Question	Answer	Size
$\mathrm{g}=$	$2 \frac{1}{21}-\frac{1}{7}=$	$\frac{40}{21}=1 \frac{19}{21}$	Greater than 1 $\frac{1}{2}$
l =	$1 \frac{10}{18}-\frac{1}{6}=$	$\frac{25}{18}=1 \frac{7}{18}$	Between 1 and $1 \frac{1}{2}$
$0=$	$\frac{3}{5}-\frac{2}{15}=$	$\frac{7}{15}$	Lessthan $\frac{1}{2}$
W =	$\frac{11}{10}-\frac{3}{50}=$	$\frac{52}{50}=1 \frac{2}{50}=1 \frac{1}{25}$	Between I and $1 \frac{1}{2}$
X $=$	$2 \frac{1}{4}-\frac{7}{16}=$	$\frac{29}{16}=1 \frac{13}{16}$	Greater than 1 $\frac{1}{2}$
$\mathrm{h}=$	$1 \frac{7}{12}-\frac{2}{3}=$	$\frac{11}{12}$	Between $\frac{1}{2}$ and I
$\mathbf{u}=$	$\frac{12}{6}-\frac{3}{12}=$	$\frac{21}{12}=1 \frac{9}{12}=1 \frac{3}{4}$	Greater than 1 $\frac{1}{2}$
$q=$	$1 \frac{3}{6}-\frac{6}{24}=$	$\frac{30}{24}=1 \frac{6}{24}=1 \frac{1}{4}$	Between I and $1 \frac{1}{2}$

Number and Algebra | Subtracting Fraction Multiples

I can subtract fractions with denominators that are multiples of the same number.		
I can subtract fractions with the same denominator.		
I can convert between improper and mixed number fractions.		
I can use multiplication to change a fraction into an equivalent.		
I can subtract fractions with denominators that are multiples of the same number.		

Number and Algebra | Subtracting Fraction Multiples

I can subtract fractions with denominators that are multiples of the same number.		
I can subtract fractions with the same denominator.		
I can convert between improper and mixed number fractions.		
I can use multiplication to change a fraction into an equivalent.		
I can subtract fractions with denominators that are multiples of the same number.		

Number and Algebra | Subtracting Fraction Multiples

I can subtract fractions with denominators that are multiples of the same number.		
I can subtract fractions with the same denominator.		
I can convert between improper and mixed number fractions.		
I can use multiplication to change a fraction into an equivalent.		
I can subtract fractions with denominators that are multiples of the same number.		

Number and Algebra | Subtracting Fraction Multiples

I can subtract fractions with denominators that are multiples of the same number.		
I can subtract fractions with the same denominator.		
I can convert between improper and mixed number fractions.		
I can use multiplication to change a fraction into an equivalent.		
I can subtract fractions with denominators that are multiples of the same number.		

Number and Algebra | Subtracting Fraction Multiples

I can subtract fractions with denominators that are multiples of the same number.		
I can subtract fractions with the same denominator.		
I can convert between improper and mixed number fractions.		
I can use multiplication to change a fraction into an equivalent.		
I can subtract fractions with denominators that are multiples of the same number.		

Number and Algebra | Subtracting Fraction Multiples

I can subtract fractions with denominators that are multiples of the same number.		
I can subtract fractions with the same denominator.		
I can convert between improper and mixed number fractions.		
I can use multiplication to change a fraction into an equivalent.		
I can subtract fractions with denominators that are multiples of the same number.		

Number and Algebra | Subtracting Fraction Multiples

I can subtract fractions with denominators that are multiples of the same number.		
I can subtract fractions with the same denominator.		
I can convert between improper and mixed number fractions.		
I can use multiplication to change a fraction into an equivalent.		
I can subtract fractions with denominators that are multiples of the same number.		

Number and Algebra | Subtracting Fraction Multiples

I can subtract fractions with denominators that are multiples of the same number.		
I can subtract fractions with the same denominator.		
I can convert between improper and mixed number fractions.		
I can use multiplication to change a fraction into an equivalent.		
I can subtract fractions with denominators that are multiples of the same number.		

